季泉江

时间:2018-09-04浏览:58265设置


季泉江课题组介绍


Principal Investigator

Quanjiang Ji (季泉江) 

Professor, ShanghaiTech University

Email: quanjiangji@shanghaitech.edu.cn

ORCID: 0000-0002-2321-8462

Address: RM 205-2, Building #3, SPST

Born: 1986, Shaoxing, Zhejiang, China

Professional Appointments:

  • ProfessorShanghaiTech University, Jul 2024-present

  • Associate ProfessorShanghaiTech University, Jan 2021-Jun 2024

  • Assistant Professor, ShanghaiTech University, Feb 2016- Dec 2020

  • Postdoctoral Researcher, University of California, Berkeley (Advisor: Prof. Michelle Chang), 2014-2016

Education:

  • Ph.D., University of Chicago (Advisor: Prof. Chuan He), 2009-2014

  • B.S., Nanjing University, 2005-2009

Honors and Awards:

  • NSFC Young Scholar (Category A), 2025

  • Fok Ying Tung Education Foundation Award, 2024

  • Chinese Chemical Society Life Chemistry Award, 2024

  • Lingang Laboratory Qiusuo Distinguished Young Scholar, 2022

  • Chinese Chemical Society Award for Young Scientists, 2021

  • NSFC Young Scholar (Category B), 2019

  • Shanghai Science and Technology Committee Rising-Star Program, 2019

  • Young Overseas High-Level Talents Introduction Plan, 2016

  • Camille and Henry Dreyfus Postdoctoral Fellowship, 2015 

  • Chinese Government Award for Outstanding Self-Financed Students Abroad, 2013 

  • The Everett E Gilbert Memorial Prize, 2012

Teaching:

  • Instrumental Analysis (2 credits, Fall)

  • Chemical Biology (3 credits, Spring)

Professional Services:

  • Section Editor, PLoS Genetics, 2022-present

  • Editorial Board Member, The CRISPR Journal, 2018-present


课题组招收生物、化学、材料等方向的研究生和博士后,进行AI for Biology、基因编辑系统发掘、化学机制、分子进化等方向研究。


Research

We harness natural diversity, mechanistic insight, and protein engineering to discover and develop next‑generation genome editing systems. Our goals are to overcome core limitations of current editors and enable rapid, scalable genetics in major human pathogens to dissect infection and drug‑resistance mechanisms, and build CRISPR-based precision therapeutics to combat genetic diseases and multidrug‑resistant infections.

1. Discovery, mechanism, and engineering of new genome editing systems. Existing CRISPR tools are constrained by targeting scope, specificity, and deliverability. We seek compact nucleases with expanded targeting range and high fidelity that are compatible with in vivo delivery. We integrate computational mining of microbial genomes, biochemical and biophysical characterization, high‑resolution structural biology, and both directed evolution and structure‑guided design to elucidate mechanisms and engineer improved editors.

Selected advances: 

    • Nat Chem Biol (2024): elucidated the molecular basis of a rare‑PAM‑recognizing CnCas12f1 variant and engineered its activity.

    • Nat Catal (2023): defined the molecular basis of ultra‑compact AsCas12f1 and engineered enhanced variants. 

    • Mol Cell (2023): mined and developed a distinct family of miniature editors (CRISPR‑Cas12n).

    • Nat Chem Biol (2021): characterized AsCas12f1 as an ultra‑compact genome editor.

    • Nat Catal (2020): reported the first catalytic‑state structure of St1Cas9, informing PAM recognition and catalysis.

2. Rapid genetic tools for major human pathogens. The AMR crisis demands scalable functional genomics to reveal physiology, virulence, and drug targets, yet many pathogens remain genetically intractable. We build fast, efficient editing and regulation platforms tailored to priority pathogens (e.g., Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Mycobacteria, Acinetobacter). We engineer Cas9/Cas12‑based genome editors, deaminase‑mediated base editors, and prime editors, optimize delivery and repair strategies, and develop genome‑wide CRISPR interference/activation screening platforms using protein engineering and synthetic biology. Our toolkits accelerate target discovery and mechanistic studies and are broadly shared with the community via Addgene (http://www.addgene.org/Quanjiang_Ji/).

Selected advances:

    • Nat Commun (2024): identified key host factors that restrict prime editing in bacteria and created a highly efficient platform (BacPE).

    • Nucleic Acids Res (2022): elucidated MurR‑mediated cell‑wall recycling in E. coli.

    • Cell Rep (2021): created a CRISPR‑Cas12k genome‑wide screening platform for P. aeruginosa.

    • Cell Chem Biol (2019): developed CRISPR‑Cas9 editing tools for A. baumannii.

3. CRISPR-based precision antimicrobials. Conventional antibiotics disrupt the microbiota and select for resistance. We develop phage‑delivered, CRISPR‑based therapeutics that couple species‑specific killing with sequence‑specific removal of resistance and virulence determinants. Using our compact, high‑specificity systems, we are building a modular, upgradeable antimicrobial platform designed to minimize collateral damage to beneficial microbes, mitigate resistance evolution, and synergize with existing antibiotics.


Publications

Selected Publications

15. Fu, W.#, Ma, J.#, Wang, Z., Tang, N., Pan, D., Su, M., Wu, Z., Gan, J., Ji, Q.* (2025) Mechanisms and engineering of a miniature type V-N CRISPR-Cas12 effector enzyme. Nature Communications 16: 5667.

14. Zhang, H., Ma, J., Wu, Z., Chen, X., Qian, Y., Chen, W., Wang, Z., Zhang, Y., Zhu, H., Huang, X., Ji, Q.* (2024) BacPE: a versatile prime-editing platform in bacteria by inhibiting DNA exonucleases. Nature Communications 15: 825.

13. Wang, Y., Wang, Z., Chen, W., Ren, Z.H., Gao, H., Dai, J., Luo, G.Z., Wu, Z.*Ji, Q.* (2024) A KDPG sensor RccR govens Pseudomonas aeruginosa carbon metabolism and aminoglycoside antibiotic tolerance. Nucleic Acids Research 52: 967-976.

12. Su, M.#, Li, F.#, Wang, Y.#, Gao, Y., Lan, W., Shao, Z., Zhu, C., Tang, N., Gan, J., Wu, Z.*Ji, Q.* (2024) Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity. Nature Chemical Biology 20: 180-189.

11. Wu, Z.#, Liu, D.#, Pan, D.#, Yu, H., Shi, J., Ma, J., Fu, W., Wang, Z., Zheng, Z., Qu, Y., Li, F., Chen, W., Huang, X., Shen, H.*Ji, Q.* (2023) Structure and engineering of miniature Acidibacillus sulfuroxidans Cas12f1. Nature Catalysis 6:695-709.

10. Chen, W.#, Ma, J.#, Wu, Z., Wang, Z., Zhang, H., Fu, W., Pan, D., Shi, J., Ji, Q.* (2023) Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Molecular Cell 83: 2768-2780.

9. Wang, Yuj., Wang, Ya., Pan, D., Yu, H., Zhang, Y., Chen, W., Li, F., Wu, Z.*Ji, Q.* (2022) Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Reports 40: 111418.

8. Zhang, Y.#, Chen, W.#, Liu, D.#, Liu, Y., Wu, Z., Li, J., Zhang, S.Y.*Ji, Q.* (2022) Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in Escherichia coliNucleic Acids Research 50: 5948-5960.

7. Wu, Z., Zhang, Y., Yu, H., Pan, D., Wang, Yuj., Wang, Ya., Li, F., Liu, C., Nan, H., Chen, W., Ji, Q.* (2021) Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nature Chemical Biology 17: 1132-1138.

6. Chen, W.#, Ren, Z.#, Tang, N., Chai, G., Zhang, H., Zhang, Y., Ma, J., Wu, Z., Shen, X., Huang, X., Luo, G.Z.*Ji, Q.* (2021) Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Reports 36: 109635.

5. Zhang, Y., Zhang, H., Xu, X., Wang, Yuj, Chen, W., Wang, Ya., Wu, Z., Tang, N., Wang, Yu, Zhao, S., Gan, J.*, Ji, Q.* (2020) Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis 3: 813-823.

4. Chen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J.*, Ji, Q.* (2019) Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology 17: e3000496.

3. Wang, Y., Wang, Z., Chen, Y., Hua, X., Yu, Y., Ji, Q.* (2019) A highly efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii toward the understanding of H2O2-sensing mechanism of OxyR. Cell Chemical Biology 26: 1732-42. 

2. Song, L., Zhang, Y., Chen, W., Gu, T., Zhang, S.Y., Ji, Q.* (2018) Mechanistic insights into staphylopine-mediated metal acquisition.  PNAS 115: 3942-7.

1. Chen, W., Zhang, Y., Yeo, W.S., Bae, T., Ji, Q.* (2017) Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. JACS 139: 3790-5.

Research Articles and Reviews (Full List)

2025

47. Fu, W.#, Ma, J.#, Wang, Z., Tang, N., Pan, D., Su, M., Wu, Z., Gan, J., Ji, Q.* (2025) Mechanisms and engineering of a miniature type V-N CRISPR-Cas12 effector enzyme. Nature Communications 16: 5667.

46. Zhang, H., Ji, Q.* (2025) Prime editing in bacteria with BacPE. Methods in Enzymology 712: 405.

45. Wang, Y.#, Tang, N.#Ji, Q.* (2025) Systematic trans-activity comparison of several reported Cas12f nucleases. Chinese Journal of Chemistry 43: 1339.

44. Li, G., Cheng, Y., Yu, J., Zhu, Y., Ma, H., Zhou, Y., Pu, Z., Zhu, G., Yuan, Y., Zhang, Z., Zhou, X., Tian, K., Qiao, J., Hu, X., Chen, X.X., Ji, Q., Huang, X., Ma, B., Yao, Y.* (2025) Compact RNA editors with natural miniature Cas13j nucleases. Nature Chemical Biology 21: 280.

2024

43. Wang, Ya. Wang, Yu., Tang, N., Wang, Z., Pan, D., Ji, Q.* (2024) Characterization and engineering of a novel miniature Eubacterium siraeum CRISPR-Cas12f system. ACS Synthetic Biology 13: 2115.

42. Tang, N., Ji, Q.* (2024) Miniature CRISPR-Cas12 systems: mechanisms, engineering, and genome editing applications. ACS Chemical Biology 19: 1399.

41. Ma T., Xie N., Gao Y., Fu J., Tan C.E., Yang Q.E., Wang S., Shen Z., Ji Q., Parkhill J., Wu C., Wang Y.*, Walsh T.R.*, Shen J.* (2024) VirBR, a transcription regulator, promotes IncX3 plasmid transmission, and persistence of blaNDM-5 in zoonotic bacteria. Nature Communications 15: 5498.

40. Zhang, H., Ma, J., Wu, Z., Chen, X., Qian, Y., Chen, W., Wang, Z., Zhang, Y., Zhu, H., Huang, X., Ji, Q.* (2024) BacPE: a versatile prime-editing platform in bacteria by inhibiting DNA exonucleases. Nature Communications 15: 825.

39. Wang, Y., Wang, Z., Chen, W., Ren, Z.H., Gao, H., Dai, J., Luo, G.Z., Wu, Z.*Ji, Q.* (2024) A KDPG sensor RccR govens Pseudomonas aeruginosa carbon metabolism and aminoglycoside antibiotic tolerance. Nucleic Acids Research 52: 967-976.

38. Tang, N., Wu, Z., Gao, Y., Chen, W., Wang, Z., Su, M., Ji, Q.* (2024) Molecular basis and genome editing applications of a compact Eubacterium ventriosum CRISPR-Cas9 system. ACS Synthetic Biology 13: 269-281.

37. Su, M.#, Li, F.#, Wang, Y.#, Gao, Y., Lan, W., Shao, Z., Zhu, C., Tang, N., Gan, J., Wu, Z.*Ji, Q.* (2024) Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity. Nature Chemical Biology 20: 180-189.

2023

36. Wu, Z.#, Liu, D.#, Pan, D.#, Yu, H., Shi, J., Ma, J., Fu, W., Wang, Z., Zheng, Z., Qu, Y., Li, F., Chen, W., Huang, X., Shen, H.*Ji, Q.* (2023) Structure and engineering of miniature Acidibacillus sulfuroxidans Cas12f1. Nature Catalysis 6:695-709.

35. Chen, W.#, Ma, J.#, Wu, Z., Wang, Z., Zhang, H., Fu, W., Pan, D., Shi, J., Ji, Q.* (2023) Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Molecular Cell 83: 2768-2780.

34. GründlingA.*, Ji, Q.* (2023) Introduction of a CRISPR-nCas9 gene-targeting plasmid into Staphylococcus aureus for gene disruption. Cold Spring Harbor Protocols doi: 10.1101/pdb.prot107925.

33. GründlingA.*, Ji, Q.* (2023) Identification of editable sites, spacer oligonucletide design, generation of the gene-targeting CRISPR-nCas9 plasmid for gene disruption in Staphylococcus aureus using the CRISPR-nCas9 and cytidine deaminase system. Cold Spring Harbor Protocols doi: 10.1101/pdb.prot107924.

32. Gründling, A.*, Ji, Q.*Salipante, S.J.* (2023) Using CRISPR-Cas9-based methods for genome editing in Staphylococcus aureusCold Spring Harbor Protocols doi: 10.1101/pdb.top107919.

31. Li, X., Zhang, G., Huang, S., Liu, Y., Tang, J., Zhong, M., Wang, X., Sun, W., Yao, Y., Ji, Q., Wang, X., Liu, J., Zhu, S., Huang, X.* (2023) Development of a versatile nuclease prime editor with upgraded precision. Nature Communications 14: 305.

30. Wang, Z.#, Zhang, Y.#, Chen, C., Zhu, R., Jiang, J., Weng, T.C., Ji, Q.*, Huang, Y.*, Fang, C.*, Liu, W.* (2023) Mapping the complete photocycle that powers a large stokes shift red fluorescent protein. Angew Chem 62: e202212209.

2022

29. Wang, Yuj., Wang, Ya., Pan, D., Yu, H., Zhang, Y., Chen, W., Li, F., Wu, Z.*Ji, Q.* (2022) Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Reports 40: 111418.

28. Wang, Z., Wang, Yu, Wang, Yuj., Chen, W.Ji, Q.* (2022) CRISPR/Cpf1-mediated multiplex and large-fragment gene editing in Staphylococcus aureus. ACS Synthetic Biology 11: 3049-3057.

27. Zhang, Y.#, Chen, W.#, Liu, D.#, Liu, Y., Wu, Z., Li, J., Zhang, S.Y.*Ji, Q.* (2022) Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in Escherichia coliNucleic Acids Research 50: 5948-5960.

26. Zhang, H., Zhang, Y., Wang, W.X., Chen, W.Z., Zhang, X., Huang, X., Chen, W.*, Ji, Q.* (2022) PAM-expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G base editors for programmable base editing in mycobacteria. Engineering 15: 67-77.

25. Huang, X., Li, X., An, H., Wang, J., Ding, M., Wang, L., Li, L., Ji, Q., Qu, F., Wang, H., Xu, Y., Lu, X., He, Y., Zhang, J.R.* (2022) Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathogens 18: e1010693.

24. Zhang, G.#, Liu, Y.#, Huang S.#, Qu, S., Cheng, D., Yao, Y., Ji, Q., Wang, X.*, Huang, X.*, Liu, J.* (2022) Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications 13: 1856.

23. Li, X., Wang, X., Sun, W., Huang, S., Zhong, M., Yao, Y., Ji, Q., Huang, X.* (2022) Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. Journal of Molecular Cell Biology 14: mjac022.

22. Yu, L., Cao, Q., Chen, W., Yang, N., Yang, C.G., Ji, Q., Wu, M., Bae, T. Lan, L.* (2022) A novel copper-sensing two-component system for inducing Dsb gene expression in bacteria. Science Bulletin 67: 198-

2021

21. Wu, Z., Zhang, Y., Yu, H., Pan, D., Wang, Yuj., Wang, Ya., Li, F., Liu, C., Nan, H., Chen, W., Ji, Q.* (2021) Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nature Chemical Biology 17: 1132-1138.

20. Chen, W.#, Ren, Z.#, Tang, N., Chai, G., Zhang, H., Zhang, Y., Ma, J., Wu, Z., Shen, X., Huang, X., Luo, G.Z.*Ji, Q.* (2021) Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Reports 36: 109635.

19. Liu, Y., Chen, Y., Dang, L., Liu, Y., Huang, S., Wu, S., Ma, P., Jiang, H., Li, Y., Pan, Y., Wei, Y., Ma, X., Liu, M., Ji, Q., Chi, T., Huang, X.*, Wang, X.*, Zhou, F.* (2021) EasyCatch, a conventient, sensitive and specific CRISPR detection system for cancer gene mutations. Molecular Cancer 20: 157. 

2020

18. Zhang, Y., Zhang, H., Xu, X., Wang, Yuj, Chen, W., Wang, Ya., Wu, Z., Tang, N., Wang, Yu, Zhao, S., Gan, J.*, Ji, Q.* (2020) Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis 3: 813-823.

17. Yu, H.#, Wu, Z.#, Chen, X., Ji, Q.*, Tao, S.* (2020) CRISPR-CBEI: a designing and analyzing tool kit for cytosine base editor-mediated gene inactivation. mSystems 5: e00350-20.

16. Wang, Y.*, Wang, Z., Ji, Q.* (2020) CRISPR-Cas9-based genome editing and cytidine base editing in Acinetobacter baumanniiSTAR Protocols DOI: 10.1016/j.xpro.2020.100025.

15. Pi, Y., Chen, W., Ji, Q.* (2020) Structural basis of Staphylococcus aureus surface protein SdrC. Biochemistry 59: 1465-1469.

14. Zhang, Y., Zhang, H., Wang, Z., Wu, Z., Wang, Y., Tang, N., Xu, X., Zhao, S., Chen, W.*, Ji, Q.* (2020) Programmable adenine deamination in bacteria using a Cas9-adenine-deaminase fusion. Chemical Science 11: 1657-1664.

13. Wu, Z., Wang, Y., Zhang, Y., Chen, W., Wang, Y., Ji, Q.* (2020) Strategies for developing CRISPR-based gene editing methods in bacteria. Small Methods 4: 1900560.

2019

12. Chen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J.*, Ji, Q.* (2019) Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology 17: e3000496.

11. Wang, Y., Wang, Z., Chen, Y., Hua, X., Yu, Y., Ji, Q.* (2019) A highly efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii toward the understanding of H2O2-sensing mechanism of OxyR. Cell Chemical Biology 26: 1732-42. 

10. Zhang, Y., Sun, X., Qian, Y., Yi, H., Song, K., Zhu, H., Zonta, F., Chen, W., Ji, Q., Miersch, S, Sidhu, S.S.*, Wu, D.* (2019) A potent anti-SpuE antibodyallosterically inhibits type III secretion system and attenuates virulence of Pseudomonas aeruginosa. Journal of Molecular Biology 431:4882-4896.

9. Fu, T., Liu, L., Yang, Q.L., Wang, Y., Xu, P., Zhang, L., Liu, S., Dai, Q., Ji, Q., Xu, G.L., He, C., Luo, C.*, Zhang, L.* (2019) Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine. Chemical Science 10: 7407-17.

8. He, T., Wang, R., Liu, D., Walsh, T.R., Zhang, R., Lv, Y., Ke, Y., Ji, Q., Wei, R., Liu, Z., Shen, Y., Wang, G., Sun, L., Lei, L., Lv, Z., Li, Y., Pang, M., Wang, L., Sun, Q., Fu, Y., Song, H., Hao, Y., Shen, Z., Wang, S., Chen, G., Wu, C., Shen, J., Wang, Y. (2019) Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology 4: 1450-6.

7. Sun, Q.#, Wang, Y.#, Dong, N., Shen, L., Zhou, H., Hu, Y., Gu, D., Chen, S., Zhang, R.*, Ji, Q.* (2019) Application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy 63: e00113-19.

2018

6. Wang, Y., Wang, S., Chen, W., Song, L., Shen, Z., Yu, F., Li, M., Ji, Q.*(2018) Precise and efficient genome editing in Klebsiella pneumoniae using CRISPR-Cas9 and CRISPR-assisted cytidine deaminase. Applied and Environmental Microbiology 84: e01834-18.

5. Chen, W., Zhang, Y., Zhang, Y., Pi, Y., Gu, T., Song, L., Wang, Y., Ji, Q.* (2018) CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6: 222-31.

4. Wei, W.#, Zhang, Y.#, Gao, R., Li, J., Xu, Y., Wang, S., Ji, Q.*, Feng, Y.* (2018) Crystal structure and acetylation of BioQ suggests a novel regulatory switch for biotin biosynthesis in Mycobacterium smegmatis. Molecular Microbiology 109: 642-62.

3. Song, L., Zhang, Y., Chen, W., Gu, T., Zhang, S.Y., Ji, Q.* (2018) Mechanistic insights into staphylopine-mediated metal acquisition.  PNAS 115: 3942-7.

2. Gu, T.#, Zhao, S.#, Pi, Y., Chen, W., Chen, C., Liu, Q., Li, M., Han, D.*, Ji, Q.* (2018) Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chemical Science 9: 3248-53.

2017

1. Chen, W., Zhang, Y., Yeo, W.S., Bae, T., Ji, Q.* (2017) Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. JACS 139: 3790-5.

Book Chapters

4. Chen, W. & Ji, Q. (2024) CRISPR/Cas9-based genome editing of Pseudomonas aeruginosaMethods in Molecular Biology 2721:3-12.

3. Wu, Z. & Ji, Q. (2024) Bacterial CRISPR systems and applications. Molecular Medical Microbiology 633-652.

2. Wang, Z., Wang, Y. & Ji, Q. (2022) Genome editing in Klebsiella pneumoniae using CRISPR/Cas9 technology. Methods in Molecular Biology 2079:105-117.

1. Chen, W. & Ji, Q. (2020) Genetic manipulation of MRSA using CRISPR/Cas9 technology. Methods in Molecular Biology 2069:113-124.


Patents

8. 季泉江、王宇。一种用于鲍曼不动杆菌胞嘧啶碱基编辑质粒及其应用。申请号:201910644444.1
7. 季泉江、王宇。双质粒系统及其应用。申请号:201910644324.1
6. 季泉江、王宇。一种用于肺炎克雷伯菌基因编辑的双质粒系统。申请号:201811039504.9
5. 季泉江、王宇。一种肺炎克雷伯菌基因编辑的表达载体。申请号:201811039489.8
4. 季泉江、陈未中。一种pnCasPA-BEC质粒及其应用。申请号:201810767194.6
3. 季泉江、陈未中。一种pCasPA/pACRISPR双质粒系统及其应用。申请号:201810766759.9
2. 季泉江、顾桐年。一种pnCasSA-BEC质粒及其应用。申请号:201810169946.9
1. 季泉江、陈未中。一种pCasSA质粒及其应用。授权号:ZL201611255504.3


Group Activities


Tianmu Lake, 2019_10


Dishui Lake, 2020_10


Anji, 2021_10


Disneyland, 2023_12


Changxing Island, 2024_11



Current Group Members


Zhaowei Wu(吴兆韡)                         

Associate Research Fellow

Associate Research Fellow, ShanghaiTech University, 2024-Current;

Assistant Research Fellow, ShanghaiTech University, 2021-2024;

Postdoc., ShanghaiTech University, 2018-2021;

Ph.D., Northwest A&F University, 2014-2018;

B.S., Northwest A&F University, 2010-2014.


Email: wuzw1@shanghaitech.edu.cn

Zhipeng Wang(王志鹏)

Postdoc

Postdoc., ShanghaiTech University, 2023-current;

Ph.D., ShanghaiTech University, 2018-2023;

B.S., Zhengzhou University, 2014-2018.


Email: wangzhp1@shanghaitech.edu.cn

Yujue Wang(王玉珏)

Postdoc

Postdoc., ShanghaiTech University, 2023-current;

Ph.D., ShanghaiTech University, 2018-2023;

B.S., Shandong University, 2014-2018.


Email: wangyj6@shanghaitech.edu.cn

Hongyuan Zhang(张洪源)

Postdoc

Postdoc., ShanghaiTech University, 2023-current;

Ph.D., ShanghaiTech University, 2018-2023;

B.S., Shandong University, 2014-2018.


Email: zhanghy2@shanghaitech.edu.cn

Na Tang(汤娜)

Postdoc

Postdoc., ShanghaiTech University, 2024-Current;

Ph.D., ShanghaiTech University, 2019-2024;

B.S., China Pharmaceutical University, 2015-2019.


Email: tangna1@shanghaitech.edu.cn

Yannan Wang(王艳男)

Postdoc

Postdoc., ShanghaiTech University, 2025-Current;

Ph.D., ShanghaiTech University, 2019-2025;

B.S., Wuhan University of Technology, 2015-2019.


Email: wangyn6@shanghaitech.edu.cn

Fei Zhang(张飞)

Postdoc

Postdoc., ShanghaiTech University, 2025-Current;

Ph.D., University of Chinese Academy of Sciences, 2020-2025;

M.S., University of Chinese Academy of Sciences, 2017-2020;

B.S., Heilongjiang University, 2013-2017.


Email: zhangfei1@shanghaitech.edu.cn

Jin Shi (史进)

Graduate student

Graduate student, ShanghaiTech University, 2021-Current;

B.S., China Pharmaceutical University, 2017-2021.


Email: shijin@shanghaitech.edu.cn

Mengjiao Su(苏梦娇)

Graduate student

Graduate student, ShanghaiTech University, 2021-Current;

B.S., Chengdu Medical College, 2017-2021.


Email: sumj@shanghaitech.edu.cn

Wenhan Fu(傅文翰)

Graduate student  

Graduate student, ShanghaiTech University, 2021-Current;

B.S., ShanghaiTech University, 2017-2021.


Email: fuwh@shanghaitech.edu.cn

Hui Gao(高慧)

Graduate student  

Graduate student, ShanghaiTech University, 2021-Current;

B.S., Shanghai Normal University, 2017-2021.


Email: gaohui@shanghaitech.edu.cn

Jiani Dai(戴佳妮)

Graduate student   

Graduate student, ShanghaiTech University, 2022-Current;

B.S., Hunan Agricultural University, 2018-2022.


Email: Daijn2022@shanghaitech.edu.cn

Ruoyun Bai(白若云)

Graduate student   

Graduate student, ShanghaiTech University, 2022-Current;

B.S., China Agricultural University, 2018-2022.


Email: Bairy12022@shanghaitech.edu.cn

Xiaoyang Chen(陈萧阳)

Graduate student   

Graduate student, ShanghaiTech University, 2022-Current;

B.S., Nanjing University, 2018-2022.


Email: Chenxy2022@shanghaitech.edu.cn

Xin Nai(奈鑫)

Graduate student   

Graduate student, ShanghaiTech University, 2023-Current;

B.S., China Pharmaceutical University, 2019-2023.


Email: naixin2023@shanghaitech.edu.cn 

Xiaoyu Zhang(张晓禹)

Graduate student   

Graduate student, ShanghaiTech University, 2023-Current;

B.S., ShanghaiTech University, 2019-2023.


Email: zhangxy22023@shanghaitech.edu.cn

Yi Jin(金逸)

Graduate student   

Graduate student, ShanghaiTech University, 2023-Current;

B.S., Shandong University, 2019-2023.


Email: jinyi2023@shanghaitech.edu.cn

Zhongmin Tong(仝重敏)

Graduate student

Graduate student, ShanghaiTech University, 2024-Current;

B.S., China Pharmaceutical University, 2020-2024.


Email: tongzhm2024@shanghaitech.edu.cn

Yuan Wei(魏媛)

Graduate student

Graduate student, ShanghaiTech University, 2024-Current;

B.S., Inner Mongolia Agricultural University, 2020-2024.


Email: weiyuan2024@shanghaitech.edu.cn

Haijun Ye(冶海军)

Graduate student

Graduate student, ShanghaiTech University, 2024-Current;

B.S., Northwest A&F University, 2020-2024.


Email: yehj2024@shanghaitech.edu.cn

Yongji Gu(顾永吉)

Graduate student

Graduate student, ShanghaiTech University, 2024-Current;

B.S., Shanghai Ocean University, 2020-2024.


Email: guyj2024@shanghaitech.edu.cn

Boyan Liu(刘博彦)

Graduate student

Graduate student, ShanghaiTech University, 2024-Current;

B.S., Shandong Agricultural University, 2020-2024.


Email: liuby2024@shanghaitech.edu.cn

Wanxiang Xiong(熊皖湘)

Undergraduate student


Email: xiongwx2024@shanghaitech.edu.cn

Bingxin Yang(杨炳欣)

Undergraduate student


Emailyangbx2023@shanghaitech.edu.cn


 Alumni

 


Liqiang Song(宋立强)

Postdoc   2016-2018

Current: UT Health Science Center (Postdoc)


Yu Wang(王宇)

Postdoc   2017-2019

Current: Jiangxi Agricultural University (Associate Professor)


Yani Zhao(赵雅妮)

B.S.   2015-2019

Current: UNC at Chapel Hill (Ph.D. candidate)


Tongnian Gu (顾桐年)

Ph.D.   2015-2020
Current: Institute of Biophysics, CAS (Postdoc)


Yishuang Pi (皮义双)

M.S.   2017-2020
Current: Viva Biotech


Chang Liu (刘畅)

B.S.   2017-2021
Current: University of California, Berkeley (Ph.D. candidate)


Yifei Zhang(张翼飞)

Ph.D.   2016-2021


Weizhong Chen(陈未中)

Postdoc, Assistant, Associate Professor 2016-2022

Current: Ningbo University (Associate Professor)


Ya Zhang(张雅)

Ph.D. 2017-2022

Current: Rice University (Postdoc)


Fan Li(李帆)

Postdoc 2020-2022

Current: Jinling Institute of Technology (Assistant Professor)


Jiacheng Ma(马佳诚)

Ph.D. 2020-2025

Current: Beijing Tuojie


Deng Pan(潘登)

Ph.D. 2020-2025

Current: Guangzhou Laboratory (Postdoc)

返回原图
/

Baidu
sogou