杨永

时间:2021-03-24浏览:18698设置


杨永课题组介绍


课题组长
杨永,副教授、研究员/Associate Professor, PI
通讯地址/address:上海海科路100号11幢401F (11-401F, 100, Haike Rd., Shanghai)
电子邮件/e-mail:  yangyong@shanghaitech.edu.cn

        

个人简历/Resume:

1997年毕业于复旦大学物理系,2002年在美国佐治亚州立大学获得物理学博士学位。毕业后先后在加州大学圣巴巴拉分校及太平洋西北国家实验室从事博士后研究工作。回国前任华盛顿大学研究员。2004-05年在加大圣巴巴拉分校期间,先后加入McFarland和中村修二(2014年诺贝尔物理学奖)工作组,分别参与金钛模型催化剂研究与设计氮化铝单晶/合金的氢化物气相外延生长 (HVPE)反应装置,并成功生长出最早的高质量氮化铝晶体。2006年后加入太平洋西北国家实验室及华盛顿大学Charles Campbell 教授工作组,合作开发红外和质谱稳态反应同位素瞬态过程动力学分析装置(steady state isotopic transient kinetic analysis 即SSITKA)。成功地把表面分析直接引入工业条件高压反应,特别在甲醇合成和水煤气反应的机理研究取得一些重要突破。2013年9月加入上海科技大学物质科学与技术学院,任助理教授,继续深入开展模拟工业条件下的催化反应特别是碳一反应的机理研究。
Dr. Yong Yang graduated from Fudan University, Department of Physics of in 1997 and received his Ph.D. in Physics from Georgia State University in 2002. He continued in University of California, Santa Barbara for postdoctoral research and Pacific Northwest National Laboratory as research associate. He was also a lab faculty researcher at Washington University. In UCSB from 2004 to 2005, he joined the groups of Drs. Eric McFarland and Nakamura, Shuji (2014 Nobel Prize laurel in Physics) and participated in the research of gold-titanium model catalyst and growth design of hydrogen vapor phase epitaxy growth (HVPE) for AlN single crystal/alloy. He developed the earliest high-quality thick crystal film of AlN. After 2006, he joined the Pacific Northwest National Laboratory and Professor Charles Campbell’s working group of Washington University to develop steady state isotopic transient kinetic analysis (SSITKA) with operando infrared and mass spectrometry. Surface analysis has been successfully introduced directly into high pressure reactions under industrial conditions, and some important breakthroughs have been made in the study of the mechanism of Cu based methanol synthesis and water gas reaction. In September 2013, he joined the School of Physical Science and Technology in ShanghaiTech University as an assistant professor. Now he continues to study the mechanism of catalytic reactions, especially C1 reactions, under simulated industrial conditions.

研究兴趣

通过多种原位表征手段,包括在线红外,原位XRD/XPS,强调联用在线质谱检测,结合实时活性评价研究催化材料的表面反应动力学和机理,如
• C1转化催化原理(甲醇合成,二氧化碳还原,合成气转化,甲烷氧化偶联/干重整等);
• 一氧化碳选择性氧化;
• 分子筛形貌结构对反应的影响。
• 关注半导体发展。
In situ characterization, including online infrared spectroscopy, in-situ XRD/XPS, emphasizing the coupling with online mass spectrometry detection, focusing on the surface reaction kinetics and mechanism of catalytic materials in relation with real-time activity evaluation.
• Principles of C1 conversion catalysis (methanol synthesis, carbon dioxide reduction, syngas conversion, oxidative coupling/dry reforming of methane, etc.);
• Selective oxidation of carbon monoxide;
• QSAR of zeolite on the reaction.
• Focus on semiconductor development.


实验室设备

反应条件下催化原位在线表征:

催化反应的机理研究最大的困难在于表征设备和真实反应之间的压力鸿沟,材料鸿沟。当然,还有基础表征周期和现代工业革命之间的时间鸿沟。通过在上科大研究中获得的多项自主专利技术,并依托平台设备,我们对多项实验尖端装备进行了针对催化机理研究的深度开发。目前,已在技术上实现了质谱仪与多种仪器设备如红外,XPSXRD等在包括高温高压等较极端热催化反应条件下的实时联用。逐步实现真实反应条件和催化材料与上述仪器平台对接,并形成高效表征流程,大幅度减少测量周期。经过质谱验证对照后,整个平台设备可以进一步协同工作,实现对同一反应过程中催化剂的原位电子结构,表面振动谱,产物成分和体相结构的实时高维度的动力学过程表征。通过这个设备平台,可以直接快速为催化反应机理提供强有力的实验证据。

In situ characterization under catalytic reaction conditions:

The most difficult problem in studying the mechanism of catalytic reaction is the pressure and material gaps between the characterization equipment and the real reaction. Of course, there is also a time gap between the fundamental characterization and the modern industrial development. Through a number of independent patented technologies obtained through ShanghaiTech University, and based on the university research facility platform, we have carried out in-depth development of a series of novel equipment for catalytic mechanism research. At present, a combination of online mass spectrometer and various instruments, such as infrared, XPS, XRD, etc., under critical thermal catalytic reaction conditions which cover the range of high temperature and high pressure, has been technically realized. Real reaction conditions and catalytic powder materials are successfully induced to the above instrument platform. Meanwhile an efficient characterization process is also developed, which greatly reduces the time cost in measurement. With data simultaneously obtained from coupled mass spectrometry, all the instruments from the whole platform are able to combine in-situ electronic structure, surface vibration spectrum, bulk structure and product composition of the same reaction process in real time as high dimensional kinetic process characterization. Through this equipment platform, strong experimental evidence can be provided for the mechanism of catalytic reaction directly and quickly.


特色装置一:

多用途质谱在线反应器

管彩茹编写

化学工业中使用催化剂的主要目的之一,就是为了缓解高温高压的极端反应条件。我们成功设计了一种面向催化剂真实反应条件下具有高度操作灵活性的在线表征微反应装置,适用范围基本覆盖了热催化所有常见反应参数。它能提供从液氮温区到800ºC区域的准确、快速控温(~±20ºC/min),并适用于常压到10MPa高压真实催化反应条件质谱在线连续实时表征。利用新装置在灵活准确控温的优势以及质谱仪ppb的精度特性和毫秒级分辨率,不但可以快速准确的完成催化剂评价、筛选等活性相关系列测试,还可以将直接动态温控扩展到低温区,完成TPD,气相滴定等精准定量的动力学测试功能,同时在高温高压条件下仍可以迅速完成阿仑尼乌斯曲线,压力依赖性等重要表征,直接对同一样品在原位条件下覆盖从基元步骤到模拟工业条件的所有常用动力学表征,是常压和高压催化评价的利器和原位表征的有力辅助工具。所以它当然也是一个“data/paper machine”,既适用于金催化一氧化碳选择性氧化等低温反应,也适用于甲烷氧化偶联这样的高温反应,还可以用于甲醇合成,合成氨过程甚至可燃冰形成机理等较极端的压力条件反应的过程成分表征。

特色装置二:

XPS样品原位制备高压反应池(HPC

周晓红绘图

In-situ XPS-MS联用技术简介:

 XPS是表征固体表面电子结构最有效的表面仪器设备。物质学院的Thermo Fisher Xi250 XPS 系统是目前灵敏度和稳定性最好的装置之一,其研究特色在于材料生长和对催化材料经反应环境影响的原位分析。 因此这台设备在到位时配置了可以承受10bar, 900ºC反应条件范围的高压原位反应池(HPGC),以及可供在线制备监控用的质谱仪。为了使这些设备的功能得到充分发挥,我们针对装置特点对高压原位池所在的样品中转真空舱室进行了全面无损(即完全不改变原有结构)升级。升级后可以在10-8torr-10bar, 900ºC范围为HPGC定制多种反应条件,并实现在线质谱监控。

   

升级内容包括:

首先增加了8种进气选择,包括两种惰性气体(目前为氩气和氦气),6种反应气体(目前为氢气,氧气,甲烷,二氧化碳,纯铜气路的一氧化碳和一路可选项);

这八种气体通过气路控制可以为与高压原位池提供:以上八种之一的单种纯气作为样品制备气氛选择;或其中3-4种气体以精确比例混合并按照严格流速控制形成的精准模拟反应环境条件。再配合与高压原位池本身10 bar900ºC的承受条件范围,就可以满足多数催化环境的模拟,也可以做煅烧,预还原等多种原位预处理,还可以完成温控动力学过程,滴定,脱附等多种较为严格的动力学验证测试,可以实现把XPS原位表征和其他在线表面联用装置结合在一起,对同一个反应过程进行平行更高维度的表征。

当然,我们也保留了传统真空设备泄漏阀的低压气体处理功能。以上八路气体也可以通过一个泄漏阀是样品获得10-8-10-1torr的低压气体原位处理,在低压范围也可以进行水和部分有机溶剂蒸汽的预处理。此外课题组成员,俄罗斯专家叶沃博士(Dr. Evgeny Vovk)设计增加了一个不需要外部气体即可在真空中自行生成极少量强氧化剂NO2的气源,可以在局域只对样品氧化而完全不影响其他真空器件。

最后我们通过课题组的专利设计“消色谱效应的超高真空腔对高压气体采样装置”建立一个简洁的毛细采样方案,不增加任何泵组即将原配SRS300电四极杆质谱直接与高压原位池以及XPS真空系统连接,实现对以上所有的反应过程(10-8torr-10 bar,室温-900ºC)进行实时的产物监控。

贴士:原位制备对XPS测试的重要性

根据热力学分子自由程理论,即使是达到标准大气压亿分之一的真空环境,也存在着在一秒钟内彻底污染清洁样品表面的可能。对性质活泼的纳米金属,易潮解的氧化物以及对碳氢化合物亲合性比较好的样品,无论预处理如何精细,在把样品移交到XPS实验室检测的路上,整个表面就已经彻底改换了。想要认识这些预处理过程对表面的影响也就无从谈起。因此一套顶级表征仪器在实验室安装后是否能真正具备原位处理能力,就像投胎一样,是个很重要的技术活。全世界最顶尖的实验室都会在这方面下足功夫。



特色装置三:

In-situ XRD-MS 联用技术

管彩茹编写

In-situ XRD-MS联用技术简介:

 XRD是表征催化剂体相结构最有效的仪器设备。物质学院的Bruker D8系统是目前灵敏度和稳定性最好的通用测试装置之一,其精度可以满足在反应条件下对催化剂进行在线实时的原位体相结构分析。配套引进的原位样品台的设计可以实现10bar900ºC的高温高压反应条件。在物质学院XRD仪器基础上,对设备本身不进行任何改动,我们在XRD原位反应池出口处增加毛细采样(课题组专利技术方案)连接在线质谱仪进行实时反应监控,并利用原配油泵对进行前级差分抽气,结合分子泵组,实现的在线质谱分析的反应条件范围与XRD原位池的压力温度完全匹配。此联用技术可以在原位反应过程观察催化剂体相结构变化的同时收集反应尾气的信号,实现在线反应动力学与材料结构关系的分析。


气路设计技术特点:

XPS类似,气路提供8种进气选择,包括惰性气体(目前为氩气和氦气),多种反应气体(目前为甲烷,二氧化碳,氧,氢,及由纯铜气路提供的一氧化碳为可选项提供组合),另外还可以提供自由选择气体。通过气路控制可以为高压原位池提供以下几种反应条件:1. 以上多路气体均可以作为纯气对样品进行不同气氛条件下的预处理实验;2. 可以利用三通阀MFC对至多3种气体进行在线混气,对比例、流速和压力进行精确严格的控制;3.配合温控,精准模拟反应环境条件,完全匹配高压原位池本身10 bar900 ºC的承受条件范围。


技术的优势:

利用以上技术不但可以实现对催化剂进行预煅烧或还原等多种原位预处理,还可以完成较复杂的反应环境下温控动力学过程以及滴定,脱附等多种严格的动力学验证测试。同时实现把XRD原位结构表征和产物在线分析同步结合,对同一个反应过程进行平行更高维度的表征。

在结构设计上,我们将在线质谱与气体控制组件,包括多个MFCBPR,质谱仪,分子泵组,计算机及传感电路等,设计为一个高度集成的在线质谱工作站,可以在几分钟内接入XRD系统而不改变内部结构。作为一个独立模块,工作站接入后为XRD原位池提供气体成分压力控制,质谱在线分析以及全部的自动控制系统,而在拆除后不会影响设备原先的任何使用设定。整个工作站采用小推车形式,方便移动,体积仅有类似功能设备的几分之一。

在对XRD原位池实现在线质谱联用升级中另一个特殊的设计是,我们创造性的将原配油泵作为差分泵分时复用,既保留对原位样品池的抽空功能,也可以在高压反应时作为质谱采样前级抽气,最大限度地利用了原有设备。

In-situ XRD-MS gas online scheme



永远在路上,不断更新中……







组内活动


苏州一日游课题组聚餐










课题组及成员重要进展

    祝贺刘泽邦荣获“壳牌能源研究与创新卓越奖”一等奖学金

    2017.09.11 法国凯普技术公司副总裁及中方团队访问课题组

    2017.09.21 浦江人才项目“Operando红外质谱对甲醇合成转化相关催化反应的在线机理研究”按期顺利结题,为课题组首次项目结题

    2018.05.15 赛默飞美国副总裁和大中华区高层与课题组交流

    2018 管彩茹获“壳牌能源研究与创新卓越奖”优秀奖学金

    2018 周晓红获得全国表面分析科学与技术应用学术会议(苏州)优秀墙报奖

    2019.06 刘泽邦获得博士学位,为物院研究生本部培养第一批博士

    2020.01 & 2021.01 Evgeny I. Vovk博士先后获得20192020年度校先进个人

    2020.06 周晓红获得博士学位2021.1 管彩茹获得博士学位

    2021.07 杨永老师通过Tenure track考核

    2023.01 杨永老师获得2023年度校先进个人

    2023.06 朱靓获得博士学位,为物院第一批本科生留校读研博士,继续留校任双一流博后

    2023.06 杨永老师获得上海市九运会高校游泳比赛第七名

    2023.12 刘阳获得校2022-2023学年三好学生

    2024.01 郎峻宇博士获得2023年度校先进个人




代表论文

2017-

Liu Q, Liu Y, Zhou N, Yang Y*, et al. Realization of high-pressure dry methane reforming by suppressing coke deposition with Co-Rh intermetallic clusters[J]. Applied Catalysis B: Environmental, 2023, 339: 123102.


Wang Y, Zhu L, Liu Y, Yang Y*, et al. Understanding surface structures of In2O3 catalysts during CO2 hydrogenation reaction using time-resolved IR, XPS with in situ treatment, and DFT calculations[J]. Applied Surface Science, 2023, 631: 157534.


Lang J, Cai Y, Qiu Z, Yang Y*, et al. H2/D2 Kinetic Isotope Effects in Methanol Synthesis on an In2O3 Catalyst[J]. The Journal of Physical Chemistry C, 2023, 127(33): 16385-16394.


Wang H, Hui Y, Niu Y, He K, Evgeny I. V., Zhou X, Yang Y, et al. Construction of Ptδ+–O (H)–Ti3+ Species for Efficient Catalytic Production of Hydrogen[J]. ACS Catalysis, 2023, 13(15): 10500-10510.


Zhu L, Li J P H, Liu Y, Yang Y*, et al. Active sites behavior on Ru@ MIL-101 (Cr) catalysts to direct alcohol to acetals conversion, an in situ FT-IR study of n-butanol and butanal[J]. Journal of Catalysis, 2022, 416: 301-310.


Yang Q, Liu J, Zhou C, Ni J,  Evgeny I. V., Yang Y,et al. Combining electrolysis with thermocatalysis for dry reforming of methane in a naturally stratifying liquid alloy-salt catalytic system[J]. Materials Today Chemistry, 2022, 25: 100949.


Si J, Zhao G, Sun W, Liu J, Guan C, Yang Yet al. Oxidative coupling of methane: examining the inactivity of the MnOx‐Na2WO4/SiO2 catalyst at low temperature[J]. Angewandte Chemie International Edition, 2022, 61(18): e202117201.


Zhao Z J, Chao Y G, Wang F, Yang Y*,et al. Intimately coupled WS 2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage[J]. Rare Metals, 2022: 1-10.


Wang Q, Santos S, Urbina-Blanco C A,  Zhou, W., Yang, Y.et al. Ru (III) single site solid micellar catalyst for selective aqueous phase hydrogenation of carbonyl groups in biomass-derived compounds[J]. Applied Catalysis B: Environmental, 2022, 300: 120730.


Li, G.; Zhao, Y.; Li, J.P.H.; Chen, W.*; Li, S.; Dong, X.; Song, Y.; Yang, Y*.; Wei, W.*; Sun, Y.*; “Insight into Composition and Intermediate Evolutions of Copper-Based Catalysts during Gas-Phase CO2 Electroreduction to Multicarbon Oxygenates”. Catalysts, 2021, 11, 1502. 

 

Guan Q, Zhu C, Lin Y, Evgeny I. V.,  Zhou, X.,  Yang Y.,et al. Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations[J]. Nature Catalysis, 2021, 4(10): 840-849.

 

Lei Zhang, Yaru Dang, Xiaohong Zhou, Peng Gao,* Alexander Petrus van Bavel, Hao Wang, Shenggang Li, * Lei Shi, Yong Yang, Evgeny I Vovk, Yihao Gao, and Yuhan Sun, “Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts,” , The Innovation, 2021, 2(4), 10170

 

Cairu Guan, Zebang Liu, Danyu Wang, Xiaohong Zhou, Yaoqi Pang, Na Yu, Alexander P. van Bavel, Evgeny Vovk, and Yong Yang *,” Exploring the formation of carbonates on La2O3 catalysts with OCM activity”, Catalysis Science & Technology, 2021, 11, 6516 - 6528

 

Jieli Wang, Xin Chang, Sai Chen, Guodong Sun, Xiaohong Zhou, Evgeny Vovk, Yong Yang, Wanyu Deng, Zhi-Jian Zhao, Rentao Mu, Chunlei Pei, and Jinlong Gong*, “On the Role of Sn Segregation of Pt-Sn Catalysts for Propane Dehydrogenation”, ACS Catal. 2021, 11(8), 4401–4410


Xiaohong Zhou, Evgeny I. Vovk, Yang Liu, Cairu Guan and Yong Yang*, “An In Situ Temperature-Dependent Study of La2O3 Reactivation Process”Front. Chem., https://doi.org/10.3389/fchem.2021.694559


Cairu Guan, Yong Yang*, Yaoqi Pang, Zebang Liu, Shenggang Li, Evgeny I. Vovk, Xiaohong Zhou, Jerry Pui Ho Li, Jun Zhang, Na Yu, Liuliu Long, Jie Hao and Alexander P. van Bavel, “How CO2 poisons La2O3 in an OCM catalytic reaction: A study by in situ XRD-MS and DFT ”, Journal of Catalysis, 2021, DOI:10.1016/ j.jcat.2021.02.017


Yaoqi Pang, Xiaohong Zhou, Evgeny I. Vovk, Cairu Guan, Shenggang Li, Alexander P. van Bavel, and Yong Yang* “Understanding lanthanum oxide surface structure by DFT simulation of oxygen 1s calibrated binding energy in XPS after in situ treatment”, Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2021.149214


Xiaohong Zhou, Yaoqi Pang, Zebang Liu, Evgeny I. Vovk*, Alexander P. vanBavel, Shenggang Li*, Yong Yang*, “Active oxygen center in oxidative coupling of methane on La2O3 catalyst”, Journal of Energy Chemistry, DOI: 10.1016/j.jechem.2021.01.008


Wenbo Kong, Yu Fu, Lei Shi, Shenggang Li, Evgeny Vovk, Xiaohong Zhou, Rui Si, Bingrong Pan, Changkun Yuan, Shuqing Li, Fufeng Cai, He Zhu, Jun Zhang*, Yong Yang*, Yuhan Sun*, “Nickel nanoparticles with interfacial confinement mimic noble metal catalyst in methane dry reforming”, Appl. Catal. B: Environmental, 2021, 285, 119837


Sai Chen, Zhi-Jian Zhao, Rentao Mu, Xin Chang, Jun Luo, Stephen C. Purdy, Jeremy Kropf, Guodong Sun, Chunlei Pei, Jeffrey T. Miller, Xiaohong Zhou, Evgeny Vovk, Yong Yang, Jinlong Gong, “Propane Dehydrogenation on Single-site [PtZn4] Intermetallic Catalysts”, Chem, 2021, 7, 1-19


ShanshanDang, BinQin, YongYang, HuiWang, JunCai, YongHan, ShenggangLi, PengGao*, YuhanSun “Rationally designed indium oxide catalysts forCO2hydrogenation tomethanol withhigh activity andselectivity”Sci. Adv., 2020; 6 : eaaz2060


Wugen Huang, Qingfei Liu, Zhiwen Zhou, Yangsheng Li, Yunjian Ling, Yong Wang, Yunchuan Tu, Beibei Wang, Xiaohong Zhou, Dehui Deng, Bo Yang, Yong Yang, Zhi Liu, Xinhe Bao & Fan Yang, “Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction”, Nature Communications, 2020,11,2312.


Songwei Zhang, Jerry Pui Ho Li, Jingpeng Zhao, Dan Wu, Biao Yuan, Willinton Yesid Hernández,Wen-Juan Zhou, Tao He, Yi Yu, Yong Yang*, Vitaly Ordomsky*, and Tao Li*, “Direct  aerobic  oxidation  of  monoalcohol  and  diols  to  acetalsusing tandem Ru@MOF catalysts”, Nano Research, doi.org/10.1007/s12274-020-2651-x


Hongliang Wang, Kexin Zhang, Jerry Pui Ho Li, Jingyu Huang, Biao Yuan, Chen Zhang, Yi Yu, Yong Yang, Yongjin Lee a and Tao Li, “Engineering plasticization resistant gas separation membranes using metal–organic nanocapsules”, Chemica Science, 2020,11,4687


Xianxian Shi, Yue Lin, Li Huang, Zhihu Sun, Yong Yang,* Xiaohong Zhou, Evgeny Vovk, Xinyu Liu, Xiaohui Huang, Mei Sun, Shiqiang Wei, and Junling Lu*, “Copper Catalysts in Semihydrogenation of Acetylene: From Single Atoms to Nanoparticles”, ACS Catal.,2020, 10, 3495−3504


Yuanxin Zhao, Xiaochuan Ren, Zhenjiang Xing, Daming Zhu,* Weifeng Tian, Cairu Guan, Yong Yang, Wenming Qin, Juan Wang, Lili Zhang, Yaobo Huang, Wen Wen,* Xiaolong Li, and Renzhong Tai, “In Situ Formation of Hierarchical Bismuth Nanodots/Graphene Nanoarchitectures for Ultrahigh-Rate and Durable Potassium-Ion Storage”, Small,DOI: 10.1002/smll.201905789


Jerry Pui Ho Li, Xiaohong Zhou, Yaoqi Pang, Liang Zhu, Evgeny I. Vovk, Linna Cong, Alexander P. van Bavel, Shenggang Li, Yong Yang*, “Understanding of binding energy calibration in XPS of lanthanum oxide by in situ treatment”, PCCP, 2019, DOI: 10.1039/C9CP04187G.


J.P. Zhao; W.Y. Hernández; W.J. Zhou; Y. Yang; E.I. Vovk; Y. Yang; M. Capron; Vitaly Ordomsky, “Selective oxidation of alcohols to carbonyl compounds over small size colloidal Ru nanoparticles”, ChemCatChem, (2019) accepted.


Zebang Liu, Jerry Pui Ho Li, Xiaomian Qi , Yunqian Dai, and Yong Yang*, ‘Applying low temperature titration for determination of metallic sites on active oxide supported catalysts’, Catalysis Science & Technology, 8, 2008, (2019).


Dan Wu, Willinton Y. Hernández, Songwei Zhang, Evgeny I. Vovk, Xiaohong Zhou, Yong Yang, Andrei Y. Khodakov, and Vitaly V. Ordomsky, “In Situ Generation of Brønsted Acidity in the Pd I Bifunctional Catalysts for Selective Reductive Etherification of Carbonyl Compounds under Mild Conditions”, ACS Catal., 2019, DOI: 10.1021/acscatal.8b04925


Yage Zhou, Walid Baaziz, Ovidiu Ersen, Pavel A. Kots, Evgeny I. Vovk, Xiaohong Zhou, Yong Yang, Vitaly V. Ordomsky, “Decomposition of Supported Pd Hydride Nanoparticles for the Synthesis of Highly Dispersed Metallic Catalyst”, Chemistry of Materials, 30, 8116, (2018).


Zebang Liu, Jerry Pui Ho Li, Evgeny Vovk, Yan Zhu, Shenggang Li, Shibin Wang, Alexander P. van Bavel, Yong Yang*, “Online kinetics study of oxidative coupling of methane over La2O3 for C2 activation: what is behind the distinguished light-off temperatures?”, ACS Catal., 2018, DOI: 10.1021/acscatal.8b03102


Jingjing Yang, Dian Gong, Guihua Li, Gaofeng Zeng, Qiyan Wang, Yelei Zhang, Guojuan Liu, Ping Wu, Evgeny Vovk, Zheng Peng, Xiaohong Zhou, Yong Yang, Zhi Liu, Yuhan Sun, “Self‐Assembly of Thiourea‐Crosslinked Graphene Oxide Framework Membranes toward Separation of Small Molecules”, Advanced Materials, 30, 1705775, (2018)


Fu, Wanlin; Dai, Yunqian*; Li, Jerry; Liu, Zebang; Yang, Yong; Sun, Yibai; Huang, Yiyang; Ma, Rongwei; Zhang, Lan; Sun, Yueming, 'Unusual hollow Al2O3 nanofibers with loofah-like skins: Intriguing catalyst supports for thermal stabilization of Pt nanocrystals', ACS Applied Materials & Interfaces, 9, 21258, (2017).


Jerry Pui Ho Li, Zebang Liu, Hao Wu, Yong Yang*, ‘Investigation of CO Oxidation over Au/TiO2 Catalyst through Temperature Programmed Online MS Studies, from Liquid Nitrogen Temperatures to 200°C’, Catalyst Today, 2017DOI- 10.1016/j.cattod.2017.02.031.


Qi Xin, Aggeliki Papavasilou; Nikos Boukos; Antonella Glisenti; Jerry Pui Ho Li; Yong Yang; Constantine J. Philippopoulos; Evangelos Poulakis; Fotis K. Katsaros; Vera Meynen; Pegie Cool‘Preparation of Cu/SBA-15 catalyst by the modified ammonia driven deposition precipitation method with a high thermal stability and an efficient automotive CO and hydrocarbons conversion’, Applied Catalysis B:  Environmental, 2017, DOI- 10.1016/j.apcatb.2017.03.071


2014-2016 (STU startup)

Hao Wu, Yong Yang*, Jerry Pui Ho Li, Zebang Liu, Yang Luo, Minghui Fan, ‘Developing characterization apparatus under operando conditions’ , Nuclear Techniques, 39, 100101-1, (2016).


Y. Yang, C. A. Mims, D. Mei, C. H. F. Peden, C. T. Campbell, ‘Reactivity of Surface Bound Formate During Low temperature Methanol Synthesis on Copper Catalysts’, ACS Catalysis, 5, 7328 (2015).


2006-2013 (PNNL)

K. Yoon, Y. Yang, P. Lu, K. Stamm, P. T. Fanson, C.T. Campbell, Y. Xia, ‘A sinter-Resistant Catalytic System Based on Pt Nanoparticles Embedded on the Inner Surface of CeO2 Hollow Fibers’, Angewandte Chemie. 51, 9543(2012) (VIP paper).


Y. Yang, C. A. Mims, D. Mei, C. H. F. Peden, C. T. Campbell, The role of water in methanol synthesis from CO and CO2 on copper catalyst, J. Catal.. 298, 10 (2013).


Kumar, Amit; Devanathan, Ram; Shutthanandan, Vaithiyalingam; Kuchibhatla, Satyanarayana; Karakoti, Ajay; Yang, Yong; Thevuthasan, S; Seal, Prof. Sudipta, 'Radiation-Induced Reduction of Ceria in Single and Poly Crystalline Thin', J. Phys. Chem. C., 116, 361 (2012)


Y. F. Zhao, Y. Yang, C. Mims, C.H. F. Peden, J. Li and D. Mei. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O, J. Catal., 281, 199, (2011).


Dai, Y.; Lim, B.; Yang, Y.; Cobley, C. M.; Cho, E. C.; Li, W.; Grayson, B.; Fanson, P. T.; Campbell, C. T. and Xia, Y. A sinter-resistant catalytic system based on Pt nanoparticles supported on TiO2 nanofibers and covered by porous silica, Angewandte Chemie International Edition, 49, 8165 (VIP article) (2010).


Y. Yang, C.A. Mims, R.S. Disselkamp, Ja-Hun Kwak, C.H.F. Peden, C.T. Campbell, The (non) formation of methanol by hydrogenation of formate on copper catalysts, Journal of Physical Chemistry  114, 17205 (2010).


Y. Yang, C.A. Mims, R.S. Disselkamp,  C.H.F. Peden, C.T. Campbell, Simultaneous MS-IR studies of surface formates under methanol synthesis conditions on Cu/SiO2, Topic in Catalysis, 52, 1440,(2009).


Yang, Y., Rob Disselkamp, C.A. Mims, Ja-Hun Kwak, J. Szanyi, C.H.F. Peden, Charles Campbell, An investigation of isotopic copper formates relationship to methanol synthesis on a Cu/SiO2 catalyst, Catalysis letter 2008.


Yang, Y., Rob Disselkamp, Charles Campbell, J. Szanyi, C. Peden, J. Goodwin, Jr., Design and operating characteristics of a transient kinetic analysis catalysis reactor system employing in-situ transmission FTIR, REVIEW OF SCIENTIFIC INSTRUMENTS 2006, 77, 094104


1999-2005 (UCSB & GSU)

Yang, Y., McFarland, E., Stability Study of Highly Dispersed Au Clusters Produced on Defected TiO2 (110); Evidence from SEM and Olefin TPD. Mat. Res. Soc. Symp. Proc. 2004, 693, U5.2


Yang, Y., McFarland, E., Stability Study of Highly Dispersed Au Clusters Produced on Defected TiO2 (110); Evidence from SEM and Olefin TPD. Mat. Res. Soc. Symp. Proc. 2004, 693, U5.2


Yang, Y., Sushchikh, M., Mills, G., Metiu, H., McFarland, E. Reactivity of TiO2 with Hydrogen and Deuterium. Applied Surface Science 2004, 229 (1-4): 346-351


Yang, Y., Lee, J., Thoms, B.D., Electron Stimulated Desorption of Deuterium from GaN (0001) Surface, Mat. Res. Soc. Symp. Proc., 2002, Vol. 743, L11.30


Yang, Y., Lee, J., Thoms, B.D., Koleske, D. D., Henry, R.L., Thermal Desorption of Deuterium from GaN (0001) Mat. Res. Soc. Symp. Proc., 2001, Vol. 693, I6.48


Bellitto, V. J., Yang, Y., Thoms, B. D., Koleske, D. D., Wickenden, A. E., and Henry, R. L., Desorption of hydrogen from GaN(0001) observed by HREELS and ELS Surface Science Letters 1999 442: L1019.


Yang, Y., Bellitto, V. J., Thoms, B. D., Koleske, D. D., Wickenden, A. E., and Henry, R. L., Adsorption and Desorption of Hydrogen on GaN(0001). Materials Science Forums 2000, Vols. 338-342 1533:


Thoms, B. D., Bellitto, V. J., Yang, Y., Koleske, D.D., Wickenden, A. E., and Henry, R. L.,The Reaction of Oxygen with GaN(0001) Materials Science Forums 2000 Vols. 338-342, 1541.



在研项目

• 国家自然科学基金面上项目 2015,“在线红外与质谱实控表征手段对碳一能源相关合成转化催化机理研究”, No. 21573148,2016.01-2019.1266万元,已结题,负责人。

• 上海市浦江人才项目 ,“Operando红外质谱对甲醇合成转化相关催化反应的在线机理研究”, No. 15PJ1405800, 2015.07-2017.0620万元,负责人。

• Funded by Shell, 'Frontier Science” between Shell and Chinese Academy of Science, “Operando MS/FT-IR studies of oxidative coupling of methane (OCM)”, WORK ORDER NO. PT662012016.10-2020.9,55万美元,负责人。

• 国家自然科学基金重大研究计划培育项目“应用多种原位表征手段对碳基能源不完全氧化反应的模拟工业条件催化体系机理研究”,No. 917451052018.1-2020.12,75万元,已结题,负责人。

• Solvay Technology“ In-situ FTIR      study of oxidation and amination reactions over metallic catalysts”,2018.2-2021.29万欧元,负责人。

• 上海市科研计划项目18JC1412100, “高效低温甲烷氧化偶联催化化学及反应工程及工艺基础研究”,在研,300万元,参与人(资金80万)。

• 国家自然科学基金项目重大研究计划集成项目“基于甲基自由基可控表面偶联的新型OCM催化剂体系的开发和工业化小试验证”920453011400万元,2021.1-2023.12,在研,参与人(资金149万)。

• 国家自然科学基金面上项目 2020,针对甲烷氧化偶联反应表面氧活性中心的原位研究”, No. 22072092, 2021.01-2024.1264万元,负责人 Evgeny Vovk (课题组副研究员)。

• Funded by Shell, 'Frontier Science' between Shell and Chinese Academy of Science, 'CO2 hydrogenation to methanol over oxide catalysts', 2020.01-2022.12, 50万美元, 共同负责人。

• 科技部催化科学重点专项项目“COx定向催化转化的精准表征与动态模拟”子课题“热催化COx加氢定向转化机制与构效关系研究”,2022YFA15038012023.1-2027.122500万元,参与人。

• 国家自然科学基金面上项目“模拟工业条件下针对单晶模型催化样品的在线动力学研究”,No. 22272107,2023.01-2026.12, 54万元,负责人。

• 双一流建设项目, “纳米贵金属催化剂推动高效绿色能源催化原位表征方法研究氧化物在极端条件下的绿色催化反应SYLDX009 2022.9-11, 44 万元,共同负责人。

• 双一流建设项目, “原位表征方法研究氧化物在极端条件下的绿色催化反应SYLPOC001 2022, 119万元,负责人。

• 科技部催化科学重点专项项目,2023YFB40052002024.1-2028.122000万元,参与人。




专利

• 杨永,“全温域快速控温高压微体积催化在线表征反应器”, ZL201511003224.9 已授权2017.07.17

• 杨永,李国栋,李沛豪,武浩,“消色谱效应的超高真空腔对高压气体采样装置”,ZL201610140435.5 已授权2018.03.27

• 杨永,李沛豪,刘泽邦,“质谱仪对二十兆帕高压内范围实时线性采样装置”,ZL201710094416.8已授权, 2019.09.17

• 杨永,李沛豪,刘泽邦,Evgeny Vovk,“针对X射线表征设备原位池联用的反应控制和质谱分析站” ,ZL201710347554.2已授权2020.06.30

 Yong Yang*; COMBINED STRUCTURE OF UHV CHARACTERIZATION INSTRUMENT-INTERCONNECTED IN-SITU REACTION CELL AND BUILT-IN MASS SPECTROMETER ELECTRIC QUADRUPOLE  , 2018-4-25, 美国欧盟 PCT/CN2018/084398, Patent No. US10,830,741 B1美国已授权,2020.11.10)

 Yong Yang*; Zebang Liu; Jerry Pui Ho Li; Evgeny Vovk,REACTION CONTROL AND MASS SPECTROMETRY WORKSTATION FOR COUPLING AN X-RAY SPECTROSCOPIC CHARACTERIZATION INSTRUMENT WITH AN IN-SITU REACTION CELL, 2018-4-25, 美国, PCT/CN8/084392, Patent No. US 11435.301 B2 美国已授权,2022.09.06

• 杨永,“UHV设备互联的原位反应池与内置质谱电四极杆的联用”,ZL201810206985.1 (已授权, 2020.10.09)

• 杨永,周晓红,Evgeny Vovk, 赵嘉峰,“一种用于原位高压反应池与超高真空表征传递联用的原位温控台”,ZL 20190001787.6 (已授权, 2023.04.25)

 杨永,朱靓,李沛豪,陈为,李桂花,“适用于气固相电化学反应的反射式控温红外光谱原位池”,CN112485199A. (已授权, 2023.08.18)

 Yong Yang*, COMBINED STRUCTURE OF UHV CHARACTERIZATION INSTRUMENT-INTERCONNECTED IN-SITU REACTION CELL AND BUILT-IN MASS SPECTROMETER ELECTRIC QUADRUPOLE , 2018-4-25, PCT/CN2018/084398, Patent No. EP3767287 (欧盟已授权2023.8.30)

• 杨永,李沛豪,朱靓,何佳倩,戈松雨,“一种控制中高温度和压力的原位红外微型反应池”,CN112326554A. (已授权2023.11.07).

 Yong Yang*, Xiaohong Zhou, Evgeny Vovk, AN IN-SITU TEMPERATURE CONTROLLING SAMPLE STAGE CUSTOMIZED FOR COUPLED INTERCONNECTION BETWEEN IN-SITU HIGH-PRESSURE REACTION CELL AND ULTRAHIGH VACUUM CHARACTERIZATION2021-07-05, 美国, PCT international application number 17367526 美国已授权,2023.12.07

 杨永,郎峻宇,“一种光学分析设备的接口”,20231000451.5,(专利申请,2023.01.03



本组成员

Evgeny Vovk/副研究员

XPS,in-situ characterization
 Boreskov Institute of Catalysis Russia

邮箱:evovk@shanghaitech.edu.cn

郎峻宇/助理研究员

原位红外,催化表征,理论计算
 上海交通大学 环境科学与工程学院 博士后

邮箱:langjy@shanghaitech.edu.cn

朱靓/博士后

原位红外,催化表征
 上海科技大学 材料科学与工程 博士

邮箱:zhuliang1@shanghaitech.edu.cn

裘哲豪/博士研究生

材料科学与工程
 上海科技大学 材料科学与工程

邮箱:qiuzhh@shanghaitech.edu.cn

王丹宇/博士研究生

材料科学与工程
 上海科技大学 材料科学与工程

邮箱:wangdy@shanghaitech.edu.cn

刘阳/博士研究生

物理
 上海科技大学 物理

邮箱:liuyang1@shanghaitech.edu.cn

丁宁徐进/博士研究生

化学
 南京农业大学 应用化学

邮箱:dingnxj@shanghaitech.edu.cn


王伟锋/博士研究生

材料科学与工程
 济南大学 材料物理

邮箱:wangwf@shanghaitech.edu.cn


杜荣嘉/硕士研究生

化学
 苏州大学 化学

邮箱:durj2022@shanghaitech.edu.cn


高康琪/硕士研究生

材料科学与工程
 齐鲁工业大学 化学工程与工艺

邮箱:gaokq2022@shanghaitech.edu.cn


高延辉/硕士研究生

材料科学与工程
 齐鲁工业大学 化学工程与工艺

邮箱:gaoyh2023@shanghaitech.edu.cn








人才培养

Jerry Pui Ho Li/Postdoc

MS, in-situ characterization
University of Newcastle chemical engineering

北爱尔兰贝尔法斯特大学 Research Associate

刘泽邦/博士后

Materials
物质学院本部首批博士毕业生

姑苏实验室 项目经理

周晓红/博士研究生

Condensed matter physics
 安徽大学 材料物理

中芯国际研发工程师

管彩茹/博士研究生

Physical chemistry
 上海师范大学 应用化学

江苏省锡山高级中学 化学教师

范明慧/博士后(2014-2016年在站)

Chemical Physics
 中国科学技术大学 化学物理系

中科大仪器工程师


武浩 硕士(2017年获得学位)

Chemical engineering
 中国矿业大学 材料成型及控制专业

华虹宏力主任工程师(CIS项目研发)


庞曜琦/硕士研究生

化学
 上海科技大学 化学

布朗大学攻读博士学位


蔡雨露/硕士研究生

化学
 首都师范大学 化学

广州市培英中学 化学教师








返回原图
/

Baidu
sogou