Jian Li

Date:2018-03-01Views:3321设置

Jian Li    Associate Professor, PI
InstituteSchool of Physical Science and Technology
Research AreaCell-free Protein Synthesis (CFPS), Natural Product Biosynthesis, Synthetic Biology, Biocatalysis
Contact Info.lijian@@shanghaitech.edu.cn


Biography
Dr. Jian Li received his PhD degree (Dr. rer. nat.) in Biotechnology from Technische Universität Berlin, Germany, in 2013. He continued to work as a postdoctoral associate at Northwestern University, USA, from 2013 to 2017. Since September 2017, he became an Assistant Professor, PI, at the School of Physical Science and Technology, ShanghaiTech University. In July 2024, he was tenured as Associate Professor. Dr. Li serves as Associate Editor for Frontiers in Natural Products.

Research Interests

1. Cell-free synthetic biology;

2. Development of novel cell-free protein synthesis (CFPS) systems;

3. Natural product biosynthesis and discovery;

4. Biocatalysis and biotransformation;

5. Novel protein-based biomaterials.


Selected Publications


(*Corresponding author, #Co-first author)


61. Ba F, Zhang YWang L, Liu WQ, Li J*. Blue-purple evaluation: Chromoproteins facilitate the identification of BioBrick compatibilityBiotechnology and Bioengineering, 2024, DOI: 10.1002/bit.28862


60. Ouyang J, Li J, Wu C. Protein-polymer conjugates: Advancing enzyme catalysis in synthetic chemistry. ChemCatChem, 2024, e202401180


59. Zhang Y, Ba F, Huang S, Liu WQ, Li J*. Orthogonal serine integrases enable scalable gene storage cascades in bacterial genome.  ACS Synthetic Biology, 202413, 3022–3031


58. Ma GL#, Liu WQ#, Huang H, Yan XF, Shen W, Visitsatthawong S, Prakinee K, Tran H, Fan X, Gao YG, Chaiyen P, Li J*, Liang ZX*. An enzymatic oxidation cascade converts δthiolactone anthracene to anthraquinone in the biosynthesis of anthraquinone-fused enediynes. JACS Au, 2024, 4, 2925–2935


57. Liu WQ#, Ji X#, Ba F, Zhang Y, Xu H, Huang S, Zheng X, Liu Y*, Ling S*, Jewett MC*, Li J*. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides. Nature Communications, 2024, 15, 4336


56. Liu Y, Huang S, Liu WQ, Ba F, Liu Y, Ling S, Li J*. An in vitro hybrid biocatalytic system enabled by a combination of surface-displayed, purified, and cell-free expressed enzymes. ACS Synthetic Biology, 2024, 13, 1434–1441


55. Ba F, Zhang Y, Liu WQ, Li J*. Rainbow screening: Chromoproteins enable visualized molecular cloning. Biotechnology Journal, 2024, 19, 2400114


54. Ouyang J, Zhang Z, Li J*, Wu C*. Integrating enzymes with supramolecular polymers for recyclable photobiocatalytic catalysis. Angewandte Chemie International Edition, 2024, 63, e202400105


53. Ba F, Zhang Y, Ji X, Liu WQ, Ling S, Li J*. Expanding the toolbox of probiotic Escherichia coli Nissle 1917 for synthetic biology. Biotechnology Journal, 2024, 19, 2300327


52. Lu H, Ouyang J, Liu WQ, Wu C*, Li J*Enzyme-polymer-conjugate-based Pickering emulsions for cell-free expression and cascade biotransformation. Angewandte Chemie International Edition, 2023, 62, e202312906


51. Wang L, Zhang Y, Liu WQ, Ba F*, Li J*. Serine integrase-based recombination enables direct plasmid assembly in vivo. Synthetic Biology and Engineering, 2023, 1, 10017


50. Zhang Y, Liu WQ, Li J*. Constructing an artificial short route for cell-free biosynthesis of the phenethylisoquinoline scaffold. Synthetic and Systems Biotechnology, 2023, 8, 610–617


49. Wang Y, Gao W, Yang S, Chen Q, Ye C, Wang H, Zhang Q, Ren J, Ning Z, Chen X, Shao Z, Li J, Liu Y, Ling S. Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Letters, 2023, 15, 221


48. Shi Q, Li J, Liu C, Zhai X, Chen L, Zhang Y, Feng D, Zhang R, Li J, Ling S, Zheng L, Luo Y, Liu Y. Fluorescence-coded logarithmic-dilution digital droplet PCR for ultrawide-dynamic-range nucleic acid quantification. Biosensors and Bioelectronics, 2023, 241, 115702


47. Ba F, Zhang Y, Wang L, Liu WQ, Li J*. Applications of serine integrases in synthetic biology over the past decade. SynBio, 2023, 1, 172–189


46. Peng R#, Ba F#, Li J#, Cao J, Zhang R, Liu WQ, Ren J, Liu Y*, Li J*, Ling S*. Embedding living cells with a mechanically reinforced and functionally programmable hydrogel fiber platform. Advanced Materials, 2023, 35, 2305583


45. Dong Z, Peng R, Zhang Y, Shan Y, Ding W, Liu Y, Li J, Zhao M, Jiang LB, Ling S. Tendon repair and regeneration using bioinspired fibrillation engineering that mimicked the structure and mechanics of natural tissue. ACS Nano, 202317, 17858–17872


44. Zhu J, Dai C, Yang H, Shan Y, Ren J, Liu Y, Li J, Chen W, Liang J, Ling S. IntelliSense bio-ionotronics battery for early warning of geological seepage. ACS Sensors, 20238, 2731–2739


43. Zhang R, Liu WQ, Ling S, Li J*. Combining cell-free expression and multifactor optimization for enhanced biosynthesis of cinnamyl alcohol. Journal of Agricultural and Food Chemistry, 2023, 71, 8551–8557


42. Chen Y, Liu WQ, Zheng X, Liu Y, Ling S, Li J*. Cell-free biosynthesis of lysine-derived unnatural amino acids with chloro, alkene, and alkyne groups. ACS Synthetic Biology, 202312, 1349–1357


41. Meng Y, Yang M, Liu WQ, Li J*. Cell-free expression of a therapeutic protein serratiopeptidase. Molecules, 2023, 28, 3132


40. Ba F, Ji X, Huang S, Zhang Y, Liu WQ, Liu Y, Ling S, Li J*. Engineering Escherichia coli to utilize erythritol as sole carbon source. Advanced Science, 2023, 10, 2207008


39. Zhang H, Cao L, Li J, Liu Y, Lv Z, Ren J, Shao Z, Ling S. Dual physically crosslinked silk fibroin ionoelastomer with ultrahigh stretchability and low hysteresis. Chemistry of Materials, 202335, 1752–1761


38. Huang S, Ba F, Liu WQ, Li J*. Stapled NRPS enhances the production of valinomycin in Escherichia coli. Biotechnology and Bioengineering, 2023120, 793–802


37. Liu Y, Liu WQ, Huang S, Xu H, Lu H, Wu C, Li J*. Cell-free metabolic engineering enables selective biotransformation of fatty acids to value-added chemicals. Metabolic Engineering Communications, 2023, 16, e00217


36. Liu WQ, Ji X, Xu H, Lu Y, Li J*. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases. Synthetic Biology Journal (in Chinese), 20234, 840–851


35. Li J*, Cellular decoding for non-natural peptides. Nature Chemistry, 2023, 15, 7–8


34. Moore SJ, Lai HE, Li J, Freemont PS. Streptomyces cell-free systems for natrual product discovery and engineering. Natural Product Reports, 2023, 40, 228–236


33. Li L, Zhang R, Chen L, Tian X, Li T, Pu B, Ma C, Ji X, Ba F, Xiong C, Shi Y, Mi X, Li J*, Keasling JD, Zhang J*, Liu Y*. Permeability-engineered compartmentation enables in vitro reconstitution of sustained synthetic biology systems. Advanced Science, 2022, 2203652


32. Yang C#, Yang M#, Zhao W, Ding Y, Wang Y*, Li J*. Establishing a Klebsiella pneumoniae-based cell-free protein synthesis system. Molecules, 2022, 27, 4684


31. Sun Z, Hübner R, Li J, Wu C. Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis. Nature Communications, 2022, 13, 3142


30. Zhang Y, Chen W, Wu D, Liu Y, Wu Z, Li J, Zhang SY, Ji Q. Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR Escherichia coli. Nucleic Acids Research, 2022, 50, 5948–5960


29. Li J*. Engineered microbes: Making valuable chemicals from waste gases. Synthetic and Systems Biotechnology, 20227, 837–838  


28. Tian X, Liu WQ, Xu H, Ji X, Liu Y, Li J*. Cell-free expression of NO synthase and P450 enzyme for the biosynthesis of an unnatural amino acid L-4-nitrotryptophan. Synthetic and Systems Biotechnology, 2022, 7, 775–783


27. Liu Y, Ba F, Liu WQ, Wu C, Li J*. Plug-and-play functionalization of protein-polymer conjugates for tunable catalysis enabled by genetically encoded "click" chemistry. ACS Catalysis, 2022, 12, 4165–4174


26. Ji X#, Liu WQ#, Li J*. Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis. Current Opinion in Microbiology, 2022, 67, 102142 (Invited review)


25. Ba F, Liu Y, Liu WQ, Tian X, Li J*. SYMBIOSIS: Synthetic manipulable biobricks via orthogonal serine integrase systems. Nucleic Acids Research, 2022, 50, 2973–2985


24. Xu H, Yang C, Tian X, Chen Y, Liu WQ, Li J*. Regulatory part engineering for high-yield protein synthesis in an all-Streptomyces-based cell-free expression system. ACS Synthetic Biology, 2022, 11, 570–578


23. Xu H, Liu WQ, Li J*. A Streptomyces-based cell-free protein synthesis system for high-level protein expression. Methods in Molecular Biology, 2022, 2433, 89–103


22. Li J*, Kwon YC*, Lu Y*, Moore SJ*. Editorial: Cell-free synthetic biology. Frontiers in Bioengineering and Biotechnology, 2021, 9, 799122


21. Yang C, Liu Y, Liu WQ, Wu C, Li J*. Designing modular cell-free systems for tunable biotransformation of L-phenylalanine to aromatic compounds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 730663


20. Huang S#, Liu Y#, Liu WQ, Neubauer P*, Li J*. The nonribosomal peptide valinomycin: From discovery to bioactivity and biosynthesis. Microorganisms, 2021, 9, 780


19. Feng J#, Yang C#, Zhao Z, Xu J, Li J*, Li P*. Application of cell-free protein synthesis system for the biosynthesis of L-theanine. ACS Synthetic Biology, 202110, 620–631


18. Liu WQ, Wu C*, Jewett MC, Li J*. Cell-free protein synthesis enables one-pot cascade biotransformation in an aqueous-organic biphasic system. Biotechnology and Bioengineering, 2020, 117, 4001–4008


17. Zhang L, Liu WQ, Li J*. Establishing a eukaryotic Pichia pastoris cell-free protein synthesis system. Frontiers in Bioengineering and Biotechnology, 2020, 8, 536


16. Xu H, Liu WQ, Li J*. Translation related factors improve the productivity of a Streptomyces-based cell-free protein synthesis system. ACS Synthetic Biology, 2020, 9, 1221–1224


15. Zhuang L#, Huang S#, Liu WQ, Karim AS, Jewett MC*, Li J*. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metabolic Engineering, 202060, 37–44


14. Liu WQ#, Zhang L#, Chen M#, Li J*. Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochemical Engineering Journal, 2019, 141, 182–189


13. Li J*, Zhang L, Liu WQ. Cell-free synthetic biology for in vitro biosynthesis of pharmaceutical natural products. Synthetic and Systems Biotechnology, 2018, 3, 83–89


12.Wang H, Li J*, Jewett MC*. Development of a Pseudomonas putida cell-free protein synthesis platform for rapid screening of gene regulatory elements. Synthetic Biology, 2018, 3, ysy003


PhD and Postdoc publications

11.Casini A, Chang FY, Eluere R, King A, Young EM, Dudley QM, Karim A, Pratt K, Bristol C, Forget A, Ghodasara A, Warden-Rothman R, Gan R, Cristofaro A, Espah Borujeni A, Ryu MH, Li J, Kwon YC, Wang H, Tatsis E, Rodriguez-Lopez C, O'Connor S, Medema MH, Fischbach M, Jewett MC, Voigt CA, Gordon DB. A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. Journal of the American Chemical Society, 2018, 140, 4302–4316


10. Li J, Wang H, Jewett MC. Expanding the palette of Streptomyces-based cell-free protein synthesis systems with enhanced yields. Biochemical Engineering Journal, 2018, 130, 29–33


9. Li J, Wang H, Kwon YC, Jewett MC. Establishing a high yielding Streptomyces-based cell-free protein synthesis system. Biotechnology and Bioengineering, 2017, 114, 1343–1353 (Video Highlighted)


8. Goering AW#, Li J#, McClure RA, Thomson RJ, Jewett MC, Kelleher NL. In vitro reconstruction of nonribosomal peptide biosynthesis directly from DNA using cell-free protein synthesis. ACS Synthetic Biology, 2017, 6, 39–44


7. Li J, Lawton TJ, Kostecki JS, Nisthal A, Fang J, Mayo SL, Rosenzweig AC, Jewett MC. Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase. Biotechnology Journal, 2016, 11, 212–218 (Front Cover)


6. Moatsou D#, Li J#, Ranji A, Pitto-Barry A, Ntai I, Jewett MC, O’Reilly RK. Self-assembly of temperature-responsive protein-polymer bioconjugates. Bioconjugate Chemistry, 2015, 26, 1890–1899 (Front Cover)


5. Li J*, Jaitzig J, Lu P, Süssmuth RD, Neubauer P. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Microbial Cell Factories, 2015, 14, 83


4. Li J*, Jaitzig J, Theuer L, Legala OE, Süssmuth RD, Neubauer P. Type II thioesterase improves heterologous biosynthesis of valinomycin in Escherichia coli. Journal of Biotechnology, 2015, 193, 16–22


3. Li J*, Neubauer P. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides. New Biotechnology, 2014, 31, 579–585


2. Li J#, Jaitzig J#, Hillig F, Süssmuth RD, Neubauer P. Enhanced production of the nonribosomal peptide antibiotic valinomycin in Escherichia coli through small-scale high cell density fed-batch cultivation. Applied Microbiology and Biotechnology, 2014, 98, 591–601


1. Jaitzig J#, Li J#, Süssmuth RD, Neubauer P. Reconstituted biosynthesis of the nonribosomal macrolactone antibiotic valinomycin in Escherichia coli. ACS Synthetic Biology, 2014, 3, 432–438


返回原图
/

Baidu
sogou